Isolation and Structural Characterization of a Novel Glycoside Pigment from *Euglena sanguinea*

Matthew J. Bertin\(^1,2\), Paul V. Zimba\(^3\), Kevin Beauchesne\(^4\) and Peter D.R. Moeller\(^{1,2,5}\)

\(^1\)Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, Charleston, SC
\(^2\)Hollings Marine Laboratory, Charleston, SC
\(^3\)USDA/ARS/MSA/CGRU, Stoneville, MS
\(^4\)JHT in support of the Hollings Marine Laboratory, NOAA, Charleston, SC
\(^5\)Toxin Chemistry, NOAA National Ocean Service, Charleston, SC

*Euglena sanguinea* is a ubiquitous algal species found in many shallow, eutrophic freshwater systems. Originally considered benign, *Euglena sanguinea* blooms have now recently been observed to result in fish kills. The isolation and structural characterization of a toxic alkaloid, euglenophycin, has precipitated the need for a rapid method of assessing harmful *Euglena* blooms. One possible method to accomplish this assessment is analysis of differentially expressed pigments between toxic and benign algae. Here we report the extraction of a novel pigment from cultured *Euglena* cell mass that is expressed at high levels in toxic algae. The pigment was purified through chromatographic methods and analyzed using gradient elution and photo-diode array detection. Nuclear magnetic resonance spectra (\(^1\)H, \(^{13}\)C, APT, COSY, HSQC, and HMBC) and mass spectra are currently being analyzed for the completion of the chemical structure. Data to date corresponds to no known pigment providing evidence that this is a novel compound. A completed structure will provide a biomarker for the rapid identification of toxic *Euglena*.

This work is supported by NOAA/NOS.