The Use of Birth Control in Zoo and Wildlife Management

Lauren Harshaw
April 10, 2008
Use in Wildlife Management

“Pest Species”
- Impact prey species
- Overpopulation causes damage to environment
 - E.g. White-Tailed Deer
- Become “reservoirs” for infectious disease
- Also includes non-indigenous species

Lower birth rates rather than increase death rates
- Hunting unattractive to public
Why Use at the Zoo?

- Maintain successful breeding program without producing surplus
- Space restrictions
 - Improved husbandry and vet care → low adult mortality/ increase in longevity → overcrowding
- Contraception or castration are preferred methods
 - Physical separation requires surplus facility space and can affect behavior of animals
 - Better option than euthanasia or transferring animals
- Serve as models for wildlife management with contraceptives
Strategies for Fertility Control

- **Pre/Anti-Ovulatory**
 - Interferes with development of fertile sperm or oocytes
 - Vaccines
 - Chemical manipulation of pituitary-gonadal axis

- **Postovulatory**
 - Pre-implantation
 - Abortive
GnRH Agonist

- Lab-created version of GnRH
- Interacts with GnRH receptor → Constant stimulation of pituitary → Increase of LH, FSH → Downregulation (Pituitary shuts down) → Decrease in Testosterone
- Can be used for:
 - Treatment of hormone-responsive cancers
 - Estrogen-dependent conditions
 - Delaying puberty in precocious individuals
 - Assisted reproduction
- Usually delivered as a nasal spray for humans
- Highly effective, safe, reversible
Harbor Seals: A Case Study

- Previous methods of reproductive control
 - Anti-androgens
 - Progestagen preparations
 - Severe side effects
 - Castration
 - Irreversible
 - Physical separation
 - Extra space, behavior issues
As Studied Previously In...

- Hawaiian Monk Seals
 - GnRH agonist used to control aggressive behaviors
 - Side effect of testosterone inhibition for 7-8 weeks noted
 - Similar patterns of testosterone levels for HMS and HS
Materials/Methods

- Seal Station in Friedrichskoog, Germany
 - At the North Sea
- Group consisted of 3 mature females, 1 mature male, 1 immature male (reached maturity during course of study)
- 1st Mature Male
 - Received injections of GnRH agonist (buserelin acetate) in 4 different years
 - In 2000(2), 2001(2), 2004, and 2005
Methods, Continued

- **2nd Male**
 - Considered mature in 2004
 - Based on evaluation of testosterone concentrations
 - Given single injections in 2004, 2005

- Neither male received GnRH agonist in 2002 or 2003
 - Tested reversibility in 1st male
GnRH Injections and Births

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Birth</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

- Buserelin acetate was 100% effective in suppressing fertility
- Sexual activity reduced, not stopped
- No changes in social structure
- No clinical side effects observed
- Males less aggressive
Summary

- GnRH agonist effective in suppressing fertility
 - Reduces serum testosterone concentrations
- Didn’t harmfully interfere with animals
- Reversible
 - Births in 2003, 2004 when younger male was sexually inactive/immature
References

