Genetic Sex Determination
Sex is determined by the heat of male partner during intercourse…..

Aristotle
(384-322 B.C.)

Courtesy of Humphrey Yao
Sex Differentiation: a favorite topic for philosophers and scientists

- **8th BC** Homer: Conception is influenced by the wind, north for males and south for females…at least in sheep
- **130-200 A.D.** Galen: Semen from left testis makes females, right makes males. A mixture produces hermaphrodites.
- **1677** Anton van Leeuwenhoek: sperm
- **1827** Carl Ernst von Baer: ovum
- **1902** Clarence McClung: the “Accessory chromosome”
- **1947** Alfred Jost: differentiation of the reproductive tract
- **1949** Barr & Bertram: discovery of the Barr bodies
- **1959** Welshons & Russell: the role of the Y chromosome
- **1991** Lovell-Badge et al: discovery of the SRY gene

Courtesy of Humphrey Yao
The Jost Paradigm

Genetic Sex Determination

Sex Chromosomes

Switches

Gonadal Sex

Environmental Sex Determination

Temperature, social cues, etc

Phenotypic Sex

Courtesy of Humphrey Yao
Evolution of Sex Determination Mechanisms

- Mammals: GSD
- Birds: Both
- Crocodiles: ESD
- Turtles: Both
- Snakes: GSD
- Amphibians: Both
- Fish: Both

Courtesy of Humphrey Yao
Evolution of Sex Determination Mechanisms
"Preformation", or "Preformationism"

- term currently used to designate a theory of reproduction that emerged in the mid-1600
 - result of the introduction of the microscope
 - the concept
 - infinite divisibility based calculus and statistics
 - widespread belief that time for life on earth was finite
 - ranging for no more than six thousand years
 - initial theory postulated that
 - all organisms of all species, of all the generations to come, had been made by God during the six days of Creation, and had then been encased inside each other, in smaller and smaller sizes.

http://8e.devbio.com/article.php?id=66
Preformationists

- split into two factions:
 - all organisms had initially been encased inside the egg (the ovists),
 - those who held that this role of mother structure had rather been ascribed to the sperm (the spermists).

"little man inside the egg"
1670
Theodore Kerckring's

http://8e.devbio.com/article.php?id=66

Drawing of Human Spermatozoa
1694
Niklaas Hartsoeker
"The Hermit"

- Tarot card IX, "The Hermit", where "the homunculus" is represented by a reproduction of Hartsoeker's drawing of the sperm cell.

http://8e.devbio.com/article.php?id=66
Preformationist

• In 1658, Giambattista della Porta
 - Second Book of his "Natural Magik"
 - proposed "how living Creatures of divers kinds, may be mingled and coupled together, and that from them, new, and yet profitable kinds of living Creatures may be Generated".
 - "how to generate pretty little dogs to play with"

http://8e.devbio.com/article.php?id=66
Sex Determination

• *Earthly Venus* - offspring of different races
 - Pierre Louis Moreau de Maupertuis
 - Venus physique / The Earthly Venus
 - La Haye, 1745

• Speculation on organismal adaptation to environment 100 yrs before Darwin
• *Examined debate on source of humans*
 - Sperm
 - Egg
• How did he test this?
 - Hint: della Porta
Genetics of Sex Determination

- rediscovery of Mendel / others suggested genetic factor

1902 Clarence McClung: the "Accessory chromosome"
1959 Welshons & Russell: the role of the Y chromosome
Gonadal Differentiation

http://gg.bu.edu/people/faculty/albrecht.htm

Kim & Capel, Develop Dynamics 235:2292–2300, 2006
Human Primary Sex Determination

1. gonadal determination
2. chromosomal
 a. female = XX
 b. male = XY
3. number of X chromosomes not important
4. presence of the Y is critical
Y Chromosome

- Represents 2% of haploid complement
 - differ between species in size and gene content
 - Contains over 200 genes
 - Contains over 50 million base pairs, of which approximately 50% have been determined

- Genes for
 - Sex determination
 - Histocompatibility
 - Spermatogenesis
 - Growth
 - Cancer
X Chromosome

• Contains over 1400 genes
 - ~5% of the haploid genome
• Contains over 150 million base pairs
 - approximately 95% have been determined
• Sex linked genes in the X chromosome
 - all these genes will be dominant
 • no opposing genes in the Y chromosome
 • freely expressed in the organisms phenotype
 - hairy ears in old age.

• Sex Linked Characteristics
 - Red-Green color blindness
 - Hemophilia - prevents the clotting of the blood
 - Hairy ears in men through advancing age
X Inactivation

• Forms the Barr Body
• Condensation of some of the genes on one of the X chromosome
• Why?
 - Double dose of genes thus,
 - Double dose of proteins
EVOLUTION OF X INACTIVATION, the silencing of most genes on one X chromosome in female cells, apparently occurred in a piecemeal fashion—one gene or a few genes at a time—to compensate for losses of genes on the Y chromosome (diagram). One effect of X inactivation can be seen in calico cats (photograph). The gene determining whether fur color is orange or black (that is, not orange) resides on the X. Females that carry the orange version on one X and the black version on the other X will end up with some orange areas and some black ones, depending on which X is shut down in each cell. A different gene accounts for the white areas.
Barr body

- **Mexico City Olympics - 1968**
 - introduced genetic testing in the form of a sex chromatin (Barr body)
- **Barcelona games**
 - PCR for Y chromosome gene, SRY
Evolution of Y Chromosome

1. **350 million years ago?**
 - **REPTILELIKE ANCESTORS OF MAMMALS**
 - **SRY gene arises**
 - **CENTROMERE**
 - **IDENTICAL CHROMOSOMES ABLE TO RECOMBINE (TO SWAP SEGMENTS)**
 - **AUTOSOME PAIR IN REPTILELIKE ANCESTOR**

2. **240 to 320 million years ago**
 - **NASCENT Y**
 - **NASCENT X**
 - **1st recombination failure occurs, leading affected part of the Y to degenerate and shrink**
 - **MATCHING AREAS STILL ABLE TO RECOMBINE**
 - **Y AS IN MONOTREMES**
 - **X AS IN MARSUPIALS**

3. **130 to 170 million years ago**
 - **2nd recombination failure occurs, triggering more decay of the Y**
 - **AREAS NO LONGER ABLE TO RECOMBINE**
 - **Y AS IN MARSUPIALS**
 - **X AS IN MONKEYS**

4. **80 to 130 million years ago**
 - **3rd failure occurs, leading to further shortening**
 - **Y IN HUMANS**

5. **30 to 50 million years ago**
 - **At some unknown point, SRY moved to the short arm of the Y**
 - **4th failure occurs, pushing the Y into its current, severely shrunken state**
 - **Y IN HUMANS**
Sex Determination

- Transcription factors critical
- Sex determination in mammals
 - Complex - multiple genes
 - SRY, DAX1, SOX9, XH2
 - WT-1 (zinc-finger protein)
 - SF-1 (steroidogenic factor -1)
 - Wnt-4
- SRY critical for testis formation

SRY (green) binds to DNA (pink) and distorts its shape. In so doing, it regulates genes that control the development of the testes.
Chronology

1. 1959: Y chromosome shown to determine males

2. 1966: Testis determining gene localized
 - short arm of Y chromosome

3. 1986-1990: XX males and XY females identified and examined
 - isolated a 35 kilobase in region 1 of Y chromosome
 - the SRY - Sex-determining Region of the Y
SRY

- A. codes for a 223 AA protein,
- B. a transcription factor
 - ligand unknown
- C. has an HMG box region, found in other transcription factors
 - 'box' binds/folds the DNA
 - essential for sex determination
 - 10-14kb genomic fragment in transgenic mice = sex reversal
 - mutation = sex reversal
- D. found in normal males and XX males (full male genotype)
- E. lacking in normal females and XY females
Evolution of Sry

Fig. 3. Alignment of SRY polypeptide from species for which full length sequences are available on NCBI (http://www.ncbi.nlm.nih.gov). The HMG box is represented in black and flanking regions in white. The glutamine rich domains of rodent Sry are indicated in grey. The alignment was constructed using the Clustalx algorithm (http://www.embl.de/~chehna/clustal/darwin/index.html). Indicated within each region of SRY that overlaps with human is the percentage of pairwise amino acid identities for all species compared to human SRY. Percent amino acid identities within clades are indicated by numbers on the branch leading to that clade. The ancestral mammalian SOX3 protein was reconstructed with a consensus sequence of human, mouse, marsupial (Sminthopsis macrorra), chicken and Xenopus SOX3. The highest identities to the overlapping regions of SRY are given within the different sections of SOX3.
Sry Gene

Fig. 12. Structure of mouse and human SRY protein. The HMG DNA-binding domain is shown in red and the large glutamine-rich domain of the mouse SRY COOH terminus is in dark yellow. Nuclear translocation is mediated by one NLS (pink) at either end of the HMG domain. The NH2-terminal NLS is recognized and bound by calmodulin (CaM), whereas the COOH-terminal acts via importin β. For both mouse and human SRY, a putative transactivation domain (TAD, light yellow) has been described. The hinge or bridge region (green) interacts with mouse SRY-interacting protein 1 (SIP-1/NHERF2) and the KRAB-only protein, whereas human SRY interacts with SIP-1/NHERF2 via its COOH terminus. Sex-reversing mutations in human SRY (marked by asterisks) leading to gonadal dysgenesis or hermaphroditism are mainly found in the HMG domain.
3 Functions of SRY

• 1) differentiation of Sertoli cells
• 2) induces migration of cells from the mesonephros into the genital ridges
• 3) induces proliferation of cells within the genital ridges
Mouse SRY

- homologous region
 - found in developing gonad just before testis formation (2 days prior to testis formation)
 - Also seen in the brain
 - suppressed late in development
Mouse testis formation - in situ whole mount for SRY

Day 14 Day 20 Day 26

Mouse SRY

- inject SRY into XX mouse embryo
 - some develop testis, ducts and penis
 - Gene dosing very important
 - no spermatogenesis - normal for XXY males
 - another gene ZFY associated with germ cells
- SRY works with other genes
 - alone does not always give testis
- SRY probably stimulates/blocks a number of genes
<table>
<thead>
<tr>
<th>Gene</th>
<th>Protein Function</th>
<th>Gonad Phenotype of Null Mice</th>
<th>Human Syndrome</th>
<th>Reference Nos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bipotential gonad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wt1</td>
<td>Transcription factor</td>
<td>Blockage in genital ridge development</td>
<td>Denys-Drash, WAGR, Frasier syndrome</td>
<td>71, 134</td>
</tr>
<tr>
<td>Sy1</td>
<td>Nuclear receptor</td>
<td>Blockage in genital ridge development</td>
<td>Embryonic testicular regression syndrome</td>
<td>143, 200, 214</td>
</tr>
<tr>
<td>Lhx9</td>
<td>Transcription factor</td>
<td>Blockage in genital ridge development</td>
<td>*</td>
<td>20</td>
</tr>
<tr>
<td>Emx2</td>
<td>Transcription factor</td>
<td>Blockage in genital ridge development</td>
<td>*</td>
<td>158</td>
</tr>
<tr>
<td>MS3</td>
<td>Transcription factor</td>
<td>Gonadal dysgenesis</td>
<td>*</td>
<td>120</td>
</tr>
<tr>
<td>Testis-determining pathway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gata4/</td>
<td>Transcription/cofactor</td>
<td>Reduced Sry levels, XY sex reversal</td>
<td>*</td>
<td>227</td>
</tr>
<tr>
<td>Fog2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sry</td>
<td>Transcription factor</td>
<td>XY sex reversal</td>
<td>XY sex reversal (LOF); XX sex reversal (GOF)</td>
<td>19, 132</td>
</tr>
<tr>
<td>Sox9</td>
<td>Transcription factor</td>
<td>XY sex reversal</td>
<td>Campomelic dysplasia, XX sex reversal (GOF)</td>
<td>10, 21, 48, 76, 230, 241, 242</td>
</tr>
<tr>
<td>Sox8</td>
<td>Transcription factor</td>
<td>XY sex reversal in combination with partial loss of Sox9 function</td>
<td>*</td>
<td>48</td>
</tr>
<tr>
<td>Fgf9</td>
<td>Signaling molecule</td>
<td>XY sex reversal</td>
<td>*</td>
<td>51, 206</td>
</tr>
<tr>
<td>Dax1</td>
<td>Nuclear receptor</td>
<td>Impaired testis cord formation and spermatogenesis</td>
<td>Hypogonadism</td>
<td>26, 153, 154, 163</td>
</tr>
<tr>
<td>Pod1</td>
<td>Transcription factor</td>
<td>XY sex reversal</td>
<td>*</td>
<td>54</td>
</tr>
<tr>
<td>Dhh</td>
<td>Signaling molecule</td>
<td>Impaired differentiation of Leydig and PM cells</td>
<td>XY gonadal dysgenesis</td>
<td>23, 43, 44, 49, 189, 237</td>
</tr>
<tr>
<td>Pdgf4</td>
<td>Receptor</td>
<td>Reduction in mesonephric cell migration</td>
<td>*</td>
<td>31</td>
</tr>
<tr>
<td>Pdgf</td>
<td>Enzyme</td>
<td>No phenotype</td>
<td>*</td>
<td>1, 145, 245</td>
</tr>
<tr>
<td>Arx</td>
<td>Transcription factor</td>
<td>Abnormal testicular differentiation</td>
<td>X-linked lissencephaly with abnormal genitalia</td>
<td>118, 127</td>
</tr>
<tr>
<td>Atrx</td>
<td>Helicase</td>
<td>ND</td>
<td>ATRX syndrome</td>
<td>226</td>
</tr>
<tr>
<td>Insl3</td>
<td>Signaling factor</td>
<td>Blockage of testicular descent</td>
<td>Cryptorchidism</td>
<td>2, 115, 168, 261</td>
</tr>
<tr>
<td>Lgr8</td>
<td>Receptor</td>
<td>Blockage of testicular descent</td>
<td>Cryptorchidism</td>
<td>2, 72, 115</td>
</tr>
<tr>
<td>Hoxa10</td>
<td>Transcription factor</td>
<td>Blockage of testicular descent</td>
<td>Cryptorchidism</td>
<td>97, 102</td>
</tr>
<tr>
<td>Hoxa11</td>
<td>Transcription factor</td>
<td>Blockage of testicular descent</td>
<td>Cryptorchidism</td>
<td>97, 102</td>
</tr>
<tr>
<td>Amh</td>
<td>Hormone</td>
<td>No Müllerian duct degeneration</td>
<td>Persistent Müllerian duct syndrome</td>
<td>14, 15, 100</td>
</tr>
<tr>
<td>Msi3l1</td>
<td>Receptor</td>
<td>No Müllerian duct degeneration</td>
<td>Persistent Müllerian duct syndrome</td>
<td>94, 100</td>
</tr>
<tr>
<td>Pbx2</td>
<td>Transcription factor</td>
<td>Dygenesis of mesonephric tubules</td>
<td>*</td>
<td>45</td>
</tr>
<tr>
<td>Lim1</td>
<td>Transcription factor</td>
<td>Agenesis of Wolffian and Müllerian ducts</td>
<td>*</td>
<td>128, 129</td>
</tr>
<tr>
<td>Dmrt1</td>
<td>Transcription factor</td>
<td>Loss of Sertoli and germ cells</td>
<td>XY female†</td>
<td>194</td>
</tr>
<tr>
<td>Ovary-determining pathway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wnt4</td>
<td>Signaling molecule</td>
<td>Müllerian duct agenesis, testosterone synthesis, and coelomic vessel formation</td>
<td>XY female (GOF)</td>
<td>89, 239</td>
</tr>
<tr>
<td>FoxL2</td>
<td>Transcription factor</td>
<td>Premature ovarian failure</td>
<td>BFPES</td>
<td>53, 175, 207, 236</td>
</tr>
<tr>
<td>Dax1</td>
<td>Nuclear receptor</td>
<td>XY sex reversal (GOF)</td>
<td>XY sex reversal (GOF)</td>
<td>110, 163, 223, 257</td>
</tr>
</tbody>
</table>

SOX9

- codes for a transcription factor
 - Protein activates genes in male sex pathway
 - Usually 1 copy of SOX9
- missing copy = COMPOMELIC DYSPLASIA
 - die soon after birth from respiratory distress,
 - Skeletal abnormalities
 - SOX9 induces collagen II gene expression
- But...75% of XY individuals lacking SOX9 develop as female or hermaphrodites
SOX 9 and Testis

- SOX9 essential for normal testis formation
- SOX9 only expressed in males on genital ridge
- co-localized in cells with SRY gene expression
- not in females
FIG. 8. Model for cell-autonomous and prostaglandin-mediated up-regulation of Sox9 in pre-Sertoli cells. Sry induces Sox9 cell-autonomously either via a direct or indirect regulatory mechanism (1). Subsequently, Sox9 maintains its own expression in an autoregulatory loop (2). In addition, Sry and/or Sox9 serve to upregulate Pgd (3), which leads to prostaglandin D$_2$ (PGD$_2$) synthesis (4) and secretion. PGD$_2$ can act by binding to its receptor DP (5), to upregulate Sox9 expression in a paracrine, and possibly also an autocrine manner (6). Thus cells that do not express Sry or fail to reach a threshold of Sry expression can be induced to upregulate Sox9 and differentiate as Sertoli cells. [Adapted from Smith et al. (216).]
SF-1 - Orphan Receptor

- a. cofactor with SRY
- b. transcription factor coded for on an autosomal gene
- c. activates genes coding for androgen synthesis
- d. SF-1 present in genital ridge for testis formation, decreases with ovarian development
 - persistence activates
 - MIH in Sertoli cell
 - androgens in Leydig cell
 - Works together with SRY
SF-1 mutation

- lack of SF-1
 - mouse = no gonads or adrenal
 - gonads develop then die
 - animals die due to lack of corticosterone
DMRT-1

- **DM-related Transcription factor**
 - Putative sex determining gene in mammal
 - Related to genes determining males in *Drosophila*
 - Has DNA binding region - DM domain
 - Missing in humans = XY female
 - Expressed in male embryo only (testis)
Other Genes

- **XH2**
 - X chromosome located
 - helicase family - codes for H type hemoglobin
 - Mutation gives
 - Female phenotype with 46 XY genotype

- **DMRT-1**
 - Expressed only in male genital ridge
 - Deletion in humans = female phenotype
 - Ortholog DMRT-2 may also be involved

- **WT-1**
 - Wilms tumor 1 gene
 - Missing/mutation = undifferentiated gonad
Ovarian Development

- Considered default in mammals
- Still requires genetic pathway
- Formed with lack of Y
 - Usually two 'X' chromosomes
Ovarian Development - DAX 1

1. potential ovary determining gene
2. two sisters - "normal XY" - "Y" was normal
 - duplicated region on the small arm of X (Xp21)
 - two copies - reversed the SRY gene activation
3. normal testis formation would override this factor with normal number of DAX1 copies
4. codes for a member of nuclear hormone receptor family - gene transcription factors
5. Orphan Receptor - ligand unknown
6. localized gene activity on the genital ridge
Wnt-4

• 1. Localized gene activity
 - on the genital ridge of mouse

• 2. Expressed in undifferentiated gonad
 - disappears with XY testis formation
 - Absence does not influence testis formation

• 3. with XX genotype
 - ovary forms and Wnt-4 expressed
Missing Wnt-4

• Missing Wnt-4
 - partial female -> male reversal
 - mutant ovary forms
 • Secrete testosterone and AMH (MIH)
 • 3β-HSD and 17α-hydroxylase detected
 • Number of oocytes dramatically reduced

• Similar mutant ovaries seen in αβERKO mice
 - suggested that ER may control Wnt-4

• SRY may repress Wnt4a and activate SF1
Mouse Sex Determination

Mouse (Mus musculus)

Male XY
- Sf1
- Wt1
- Dmrt1
- Sox9
- Amh

Female XX
- Sf1
- Wt1
- Dmrt1
- Sox9
- Amh

Sry Expression

Embryonic Day
- 9.5
- 10.5
- 11.5
- 12.5
- 13.5
- 14.5
- 15.5

Fig. 3. Model of balanced opposing signals between Fgf9 and Wnt4. In XY gonads, Sry upregulates Sox9 to establish a feed-forward loop that upregulates Fgf9 and silences Wnt4. In XX gonads, Wnt4 dominates and silences Fgf9 and Sox9.
Proposed Gene Interactions - Testis Differentiation

FIG. 13. Postulated interaction of molecular players involved in early testicular development. See text for details. Double-headed arrows, binding to a receptor; colored arrows (blue, red, green), differentiation of precursor cells into testis-specific cell types; black, bold arrow, gene important for cellular process.
Several factors are required between 10.5–11.5 days post coitum (dpc) for the outgrowth of the early bipotential gonad by preventing apoptosis or promoting cell proliferation (Sf1, Wt1, Lhx9, M33, Emx2, Igf1r/Ir/Irr). Between 10.5–12.0 dpc, GATA4/FOG2 and WT1+KTS are implicated in the activation of Sry expression in the XY gonad. Sry expression diverts the XY gonad towards the testis fate. Sox9, Fgf9 and Dax1 are implicated in the early steps of the male pathway after the initiation of Sry expression. Downstream signalling pathways promote the rapid structural changes that characterize early testis development (Pdgf, Dhh, Arx). By contrast, few morphological changes are apparent in the XX gonad until near birth (18.5 dpc), when ovarian follicles begin to form in the ovarian cortex. Wnt4 and Fst are the only two genes with characterized functions in early ovarian development. Arx, aristaless related homebox; Dax1, nuclear receptor subfamily 0, B1 (Nr0b1); Dhh, desert hedgehog; Emx2, empty spiracles homologue 2; Fgf9, fibroblast growth factor 9; Fog2, zinc finger protein, multitype 2 (Zfpm2); Fst, follistatin; Gata4, GATA binding protein 4; Igf1r, insulin-like growth factor 1 receptor; Ir, insulin receptor; Irr, insulin receptor-related receptor; Lhx9, LIM homeobox protein 9; M33, chromobox homologue 2 (Cbx2); Pdgf, platelet-derived growth factor; Sf1, nuclear receptor subfamily 5, group A member 1 (Nr5a1); Sox9, Sry-like HMG-box protein 9; Wnt4, wingless-related MMTV integration site 4; Wt1, Wilms tumour homologue.
Bipotential Gonad

Fig. 1. Gonadal development and sexual differentiation in the chicken embryo. (A) Schematic of gonadal anatomy. At embryonic day 3.5 (stage 19–20), the gonads are undifferentiated or bipotential (shown in blue), on the medial surface of the mesonephric kidneys (pale brown). In ZZ males, bilateral testes develop, while, in ZW females, the left gonad becomes an ovary and the right regresses. (B) Schematic of gonadal histology. The bipotential gonad comprises an outer cortical layer (c), and underlying medulla (md). Primordial germ cells (pgc) are concentrated mainly in the cortex. Testis formation involves the condensation of medullary cords into seminiferous (testis) cords. The (left) ovary is characterised by cortical proliferation, while the medulla becomes reticulated, with numerous cavities (lacunae). (C) Gonadal histology in the chicken embryo. At embryonic day 5.5 (E5.5; stage 27–28) the gonads are histologically undifferentiated. The cortex (c) is distinct from the underlying medulla (md). In ZZ males, condensing cords are apparent by E6.5 (stage 30). The interstitium (site of Leydig cell development and testosterone synthesis) is present between the cords. In contrast, cortex proliferation, including germ cell proliferation, is apparent in ZW females.

Chicken Gonad Differentiation

Fig. 2. Timing of gene expression in embryonic chicken gonads, as assessed by whole mount and tissue section in situ hybridisation. The onset of morphological differentiation into testes or ovaries is shown (from day 6.5; stage 30). In ZZ males, *DMRT1* mRNA expression is detectable from day 3.5–4.5 (stages 20–25). In comparison, SOX9 in males is first detectable at day 6.0 (stage 29). In ZW females, *HINTW* mRNA is expressed from days 3.5–4.5 (stages 20–25). *FET1* mRNA is also expressed from days 3.5–4.5, but asymmetrically expressed, with stronger expression in the left gonad. *FET1* expression is down-regulated in the gonads by day 6.5 (stage 30). In comparison, *CYP19A1* is first detectable at day 6.0 (stage 29). *AMH* is first detectable at stage 25 in both sexes, but appears higher in males, according to tissue section in situ hybridisation. By stage 28, this dimorphism in *AMH* is clear (left gonads only are shown). The onset of *AMH* expression precedes SOX9 expression in males, and *CYP19A1* expression in females. The *AMH* expression is taken from Oreal et al. (1998) with permission.
FIG. 4. Development and differentiation of the genital duct system. Both Müllerian and Wolffian ducts are present at the bipotential stage. In males, the Müllerian ducts degenerate under the influence of AMH secreted by the testicular Sertoli cells, whereas the Wolffian ducts differentiate into epididymides, vasa deferentia, and seminal vesicles under the control of androgens produced by Leydig cells. In females, the Wolffian duct regresses and the Müllerian duct differentiates into oviduct, uterus, and upper vagina.
Duct/Genitalia Development

• Hormonal Regulation
 • a. MIH (Müllerian Inhibiting Hormone) - Müllerian duct
 • b. Androgens
 - 1. ducts - testosterone
 - 2. penis/prostate - dihydrotestosterone
Mullerian Duct Formation

- first description by Johannes Peter Muller in 1830
- origin of the Mullerian duct remains controversial
- lineage-tracing experiments in chicken and mouse embryos
 - show that all Mullerian duct components derive from the coelomic epithelium
 - Mullerian epithelial tube derived from an epithelial anlage at the mesonephros anterior end,
 - segregates from the epithelium and extends caudal of its own accord
 - via a process involving rapid cell proliferation
 - tube is surrounded by mesenchymal cells derived from local delamination of coelomic epithelium
 - no significant influx of cells from the Wolffian duct
 - no support that the tube forms by coelomic epithelium invagination along the mesonephros

Evolution and Embryonic development of the duct system in males
- pronephric kidney
- mesonephric kidney
- metanephric kidney
Pronephric kidney

- **1st kidney to form in humans**
 * It is the **functional kidney** of fish and larval amphibians

- Develops anteriorly then degenerates in amniotes

- Remaining duct called the **Wolffian Duct (AD)**
 - Sperm transport in amniotes
Mesonephric Kidney

- 2nd kidney
- 30 tubules form in humans
- As tubules form caudally the anterior ones die off
- Female mammals- all tubules die
- Male mammals- tubules become sperm ducts of testis
- Functional Kidney: anamniotes
Metanephric kidney (metanephros)

- Permanent kidney of amniotes
- Serves both as an excretory and osmoregulatory organ
- Ureter transports urine
- Ductus Deferens (AD) transports sperm
Bipotential Ducts

and their ducts in Müllerian ducts are

SEXUALLY INDIFFERENT
(Bipotential)

Gonads

Mesonephros

Wolffian duct

Ureter

Müllerian duct

Cloaca

Epididymis

Testes

Metanephric kidneys

Ovaries

Oviduct

Degenerated Müllerian duct

Wolffian duct (vas deferens)

Urinary bladder

Urethra

Degenerated Wolffian duct

Urinary bladder

Urethra

Müllerian duct (oviduct)

Uterus

Vagina

MALE

FEMALE

Fig 17.4 Gilbert (2006)
Developmental Biology
Secondary Sex Determination

- **Body phenotype**
 - e.g., duct system
 - usually determined by hormones
 - a. male = androgens, MIH
 - b. female = no hormones?

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolffian</td>
<td>+ T</td>
<td>- no T</td>
</tr>
<tr>
<td>Mullerian</td>
<td>- MIH</td>
<td>+ no MIH</td>
</tr>
</tbody>
</table>
Testicular Feminization

Androgen insensitivity syndrome

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
<th>TFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolffian</td>
<td>+ T</td>
<td>- no T</td>
<td>?</td>
</tr>
<tr>
<td>Mullerian</td>
<td>- MIH</td>
<td>+ no MIH</td>
<td>?</td>
</tr>
</tbody>
</table>

- XY genetics
- Lack functional androgen receptor
- Testicular formation
- Female external phenotype
- Duct system?
"Guevodoces"

- "Guevodoces" - "eggs at 12" (Dominican Republic)
 - a. lack functional gene for 5α-reductase 2
 - b. born with blind vaginal sac or poorly fused labia
 - c. at puberty - 12 years - tissue become responsive to testosterone
 - masculinization of penis, pubic hair - not facial hair
 - descent of testis into "scrotum"
 - "eggs at 12" - infertile
Some web sites

- http://www.pbs.org/wgbh/nova/miracle/determined.html#