Fertilization

Egg Maturation

- All material necessary for beginning of new life
- Contains
 - Proteins
 - Ribosomes and tRNA
 - mRNA
 - Enough for 25 50,000 different proteins!
 - Morphogenic factors
 - Protective chemicals

Egg Maturation - Xenopus

Component	Excess over normal cell
Mitochondria	100,000
RNA polymerase	60-100,000
DNA polymerase	100,000
Ribosomes	200,000
tRNA	10,000
histones	15000

Laskey, 1979

Oocyte RNA synthesis

Lampbrush Chromosome

- During final stages of oocyte development
 - Massive RNA synthesis
 - For cytoplasmic RNA
 - For protein synthesis late in development (ZP proteins)
 - Lampbrush chromosomes
 - Stretched out loops of DNA
 - Allows gene transcription

Xenopus oocytes

Egg Stage at Fertilization

Recognition of Sperm and Eggs

- Sperm Attraction External
 - 1. Egg attracts sperm by Chemotaxis
 - 2. Not common phenomenon in nature
 - common in marine organisms
 - chemotaxis is species specific

Chemotaxis

- Found in invertebrates and some fishes
- Herring
 - egg has chorion that surrounds oocyte
 - chorion has single opening the micropyle
 - the sperm must pass thru to fertilize egg
 - c. chorion releases chemical in area of micropyle
 - herring steroid
 - sturgeon glycoprotein

Sperm Anatomy

• 4 sperm/ meiotic event

- Sperm has
 - Head
 - mid piece
 - tail -

© 2000 Sinauer Associates, Inc.

Sperm Heads

- Vary in shape
- Contain
 - Condensed DNA
 - Acrosome
 - Highly modified lysosome
 - Proteins

Silver nitrate stain and Giemsa

- Modified lysosome
 - Contains proteolytic enzymes

Acrosome

FITC lectin = green = acrosome TOTO-3 iodide = blue = DNA Nile red = membrane lipid = tail

Mid Piece

- 'motor' of the sperm is the AXONEME
- High # mitochondria
- Microtubules in 9 + 2 arrangement
 - Sliding filament model
 - Tubules = tubulin
 - Protein arms = dynein
 - Hydrolyzes ATP
 - Kartagener triad
 - These people lack dynein
 - Males infertile
 - Histone H1
 - Stabilizes microtubules

Sperm transport

- Egg and sperm transported to site of fertilization
- Sperm do NOT get there by swimming
 - Beads of similar size as head arrive in same amount of time
 - Dead sperm do too!
 - So how are they transported?

Venturi Effect

Why Swim?

- Swimming seems to keep sperm up in 'current'
 - If they don't swim many attach to epithelium
 - Don't make it thru cervical mucus
- Swimming allows them to penetrate the zona & cumulus
 - CatSper- mice sperm can only fertilize
 eggs with cellular matrix removed

To Swim or Not to Swim

- Sperm can not 'swim' as they leave the testis - they are immobile
- Acquire 'progressive motility' in the epididymis
 - Don't move in epididymis
 - Swim with ejaculation
 - Requires Ca⁺⁺ to function
 - Requires CatSper membrane channel
 - CatSper-deficient mice sperm swim 1/3 of normal

CatSper and other ion channel(s)? regulate sperm motility

Garbers Nature 413:580 (2001)

Capacitation and Acrosome Reaction

Capacitation

- newly ejaculated sperm can not undergo acrosome reaction required for fertilization
 - maturational process in female tract called CAPACITATION
 - requirements vary among species

Observations

- Capacitation is a change in the makeup of the sperm membrane
 - Observed decrease in cholesterol / phospholipid ratio
 - Cholesterol efflux
 - Removal of cholesterol by sterol-binding proteins
 - Array of sperm membrane proteins phosphorylated
 - Tyrosine phosphorylated cAMP dependent
 - Adenylyl cyclase bicarbonate sensitive
 - Elevation in intracellular pH and bicarbonate conc
 - Removal of a number of glucosylphosphatidylinositol (GPI) - anchored proteins

Angiotensin-converting enzyme (ACE)

- Key regulator of blood pressure
 - Cleaves small peptides
 - Angiotensin I & bradykinin
 - peptidase
- Two forms
 - Somatic (150-180 kDa)
 - Testicular (100-110 kDa)

ACE in the Testes

- ACE has GPI-anchored protein releasing activity
 - Mammals
 - >200 cell surface proteins with various functions
 - Anchored to membrane by covalently bonded GPI moiety
 - GPI = glycosylphosphatidylinositol
 - ACE has GPIase
 - (GPI-anchored protein releasing activity)

ACE and Capacitation

Mayor Nature Struc Molec Bio 12:107 (2005)

Acrosome Reaction

- 2nd in series of egg/sperm interactions
- in most organisms
- two components
 - a. acrosomal vesicle rupture
 - b. extension of acrosomal process

Acrosome Reaction

- acrosome reaction activated in invertebrates or in vitro by:
 - a. soluble egg jelly or uterine factor
 - b. actual contact with egg plasma membrane
 - c. increasing Ca++ concentration of seawater

Acrosome Sequence

- sequence of events in a sea urchin
 - a. contact with jelly
 - b. influx of Ca++
 - c1. exocytosis of acrosomal vesicle
 - d1. release of lytic enzymes and exposure of bindins
 - c2. efflux of H+ and influx of Na+
 - d2. intracellular increase in pH
 - e2. actin polymerization
 - f2. extension of acrosomal process

Fertilization

Acrosome Reaction

 in mammals capacitation prerequisite step for sperm binding to zona pellucida and acrosome reaction

Mouse

- acrosome reaction occurs after binding of sperm and egg
 - a. sperm binds with zona pellucida (ZP)
 - b. ZP composed of 3 proteins (ZP1, ZP2, ZP3)
 - c. ZP has specific protein that binds to ZP3 receptor on sperm
 - ZP3 83kD glycoprotein
 - initiates acrosome reaction
 - has lysins as described above

ZP3 & Sperm Binding

Bliel and Wassarman, 1980; Florman and Wassarman, 1985

© 2000 Sinauer Associates, Inc.

Recognition in Mammalian Sperm

- a. Sperm adhesion to the ZP based on proteincarbohydrate recognition
- b. N-acetylglalactosaminyl linkages from ZP3 with sperm receptor
- c. Sperm receptor still being characterized
- d. detected in
 - mouse, G. pig and human to date
- e. binding to ZP3 triggers acrosome reaction
 - Opens T-type low voltage activated Ca⁺⁺ channels
 - Activates G proteins which induces sustained Ca influx and exocytosis

Acrosome Reaction

Human

- acrosome reaction begins distant from egg at corona radiata
- sperm releases enzymes:
 - Hyaluronidase
 - hydrolyzes hyaluronic acid of extracellular matrix
 - Corona-dispersing enzyme
 - Acrosin
 - AA composition like trypsin
 - must be activated to work by glycoprotien in female reproductive tract

Human Acrosome Reaction

@ 2000 Sinauer Associates, Inc.

Sperm Egg Adhesion

- After penetration of ZP
 - Sperm adhere to and fuse with egg plasma membrane
 - Involves proteins on sperm
 - Fertilin- α
 - disintegrin and metalloprotease domain 1 or ADAM1
 - Fertilin- β (ADAM2)
 - cyritestin (ADAM3)
 - CRISP1 (cysteine-rich secretory protein 1)
 - All demonstrated important by antobody knockout studies
 - Interact with oocyte membrane integrin family proteins

Sperm-Egg Adhesion

Evans and Florman Nature 2002

Polyspermy

- Want only one sperm to bind with egg
 - Most species
- But.....
 - 100s will be in area around egg
 - How do you block polyspermy?

Blocking Polyspermy

- Fast Block
 - Involves changes in oocyte membrane polarity
 - Normal resting potential: -70mV

Fast Block

- Fusion of sperm and egg ephemeral change in ion permeability (< 1min)
- Causes influx of Na⁺ ions
- Loss of electrical potential
 - Can change from -70mV to +20 mV
- -10mV required for sperm/oocyte binding
- Thus first sperm binds others don't
- Effect lasts less than 1 min to several mins

Membrane Potential Change

Slow Block

- Change in ion potential activates oocyte
 - Cytoplasmic calcium wave triggered
 - Ca⁺⁺ released from endoplasmic reticulum
- Ca⁺⁺ ions initiate cortical granules release
 - Homologous to acrosome in sperm
 - Contain glycosaminoglycans (GAGs) and proteases
 - 1000s in cortex of cytoplasm of egg in many species
 - Ca⁺⁺ initiates exocytosis

Calcium Wave with Fertilization

http://petrus.ncl.ac.uk/

Calcium Wave - Constriction

biodev.obs-vlfr.fr/recherche/dougall/

Calcium and Fertilization

Cortical Granule Reaction

Cortical Granules Response

- Ca⁺⁺ stimulates exocytosis
- Proteases dissolve connection between ZP and oocyte membrane
- Other enzymes 'harden' ZP
 - Tyrosine-tyrosine cross linkages
- GAGs increase osmolarity of space between oocyte and ZP
 - Water floods into space raising ZP off oocyte

Natural Polyspermy

- Some species with large ova have physiological polyspermy
 - Chondrichthyans
 - Urodeles
 - Reptiles
 - Birds
- All but one sperm pronucleus blocked from fusing with female pronucleus

First Mitosis - Zygote

