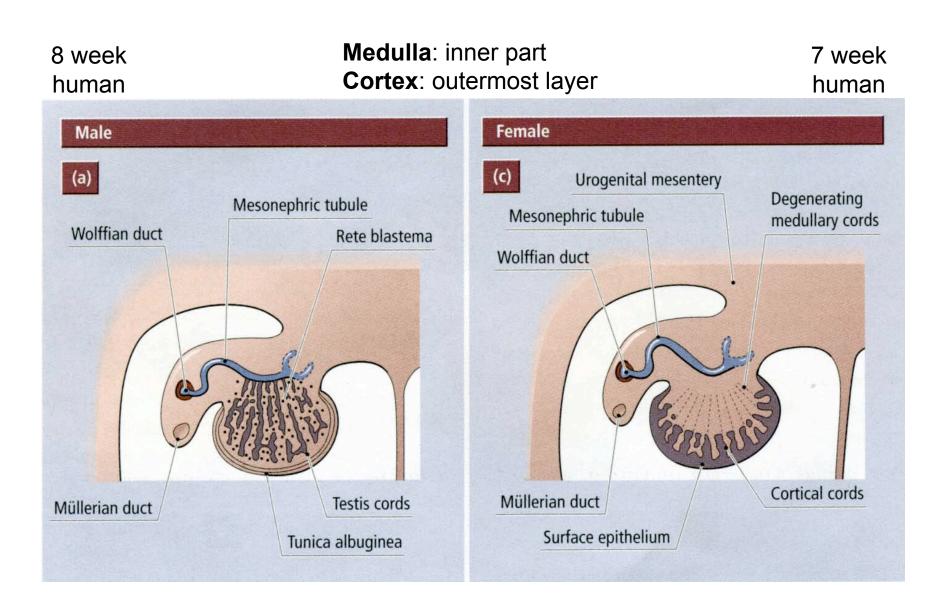
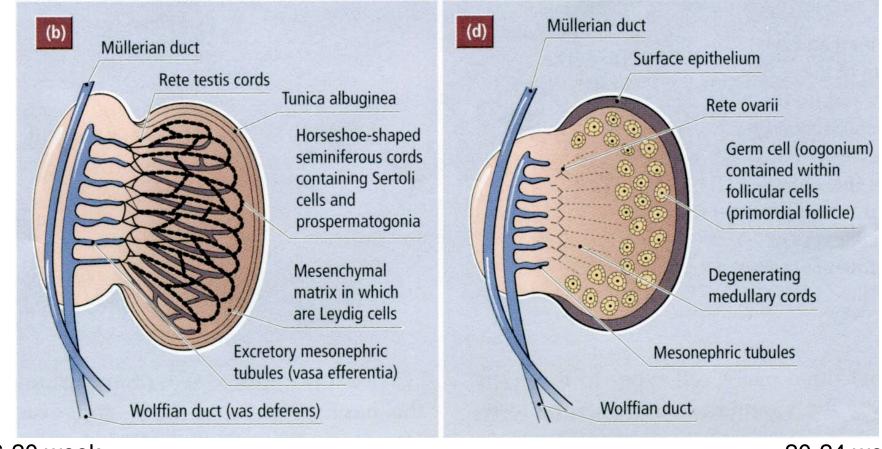

Embryology of the Testis




Parks and Jameson Endocrinology 146(3):1035-1042

Human Testicular Development

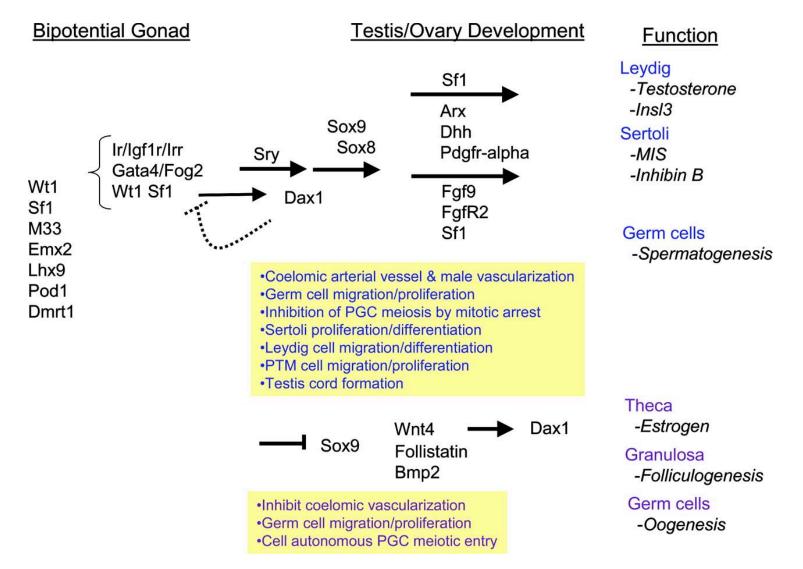
T. Klonisch et al. Developmental Biology 270 (2004) 1-18

16-20 week human

20-24 week human

Cell Lineages in Testis & Ovary

Indifferent gonad	Testis	Ovary
Supporting	Sertoli	Granulosa
Steroidogenic	Leydig	Theca
Stromal	Peritubular	Stromal
Gonocytes	Spermatogenesis	Oogenesis
Unknown	Macrophages	Not present

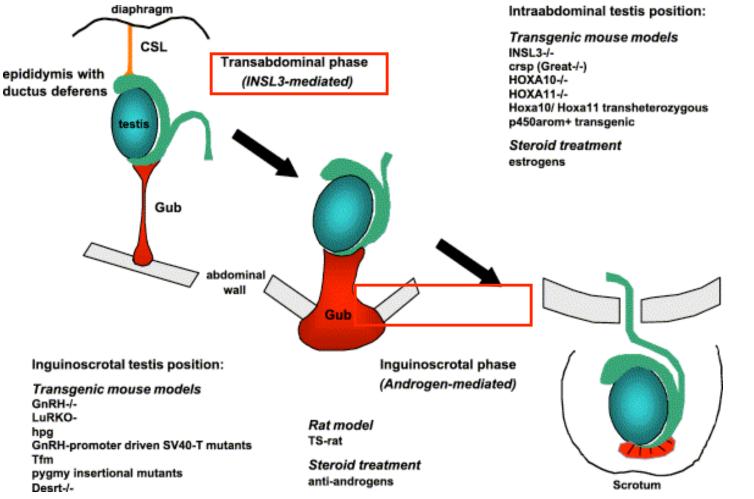

Soder (2007) Best Practice & Research Clinical Endocrinology & Metabolism 21: 381-391.

Timing of Major Testicular Events in Mammals

- Variation among mammals in timing
- Process similar

Species	Genital ridge formation	Testis formation	Beginning of transabdomi-	Beginning of inguinoscro-	Testis in scrotum
			nal phase	tal phase	
Human (270)	49 (18%)	56 (21%)	70 (26%)	182 (68%)	245 (91%)
Pig (115)	21-22 (18-19%)	27 (24%)	55 (48%)	85–90 (74–78%)	around birth
Horse (336)	30 (9%)	34 (10%)	45 (13%)	ca. 310 (92%)	around birth
Cattle (281)	30-32 (11%)	41 (15%)	80-90 (29-32%)	112 (40%)	around birth
Sheep (149)	22 (15%)	31 (21%)	60-65 (40-44%)	72-75 (48-50%)	around birth
Dog (65)	23-24 (35-37%)	29 (45%)	42 (65%)	4-5 dpp (106-107%)	35-40 dpp (154-162%)
Mouse (20)	9,5 (48%)	12 (60%)	15.5 (78%)	6 dpp (130%)	21 dpp (205%)
Rat (22)	9.5 (43%)	12 (55%)	16 (73%)	6 dpp (127%)	19 dpp (186%)

Genes - Ovary/Testis Development

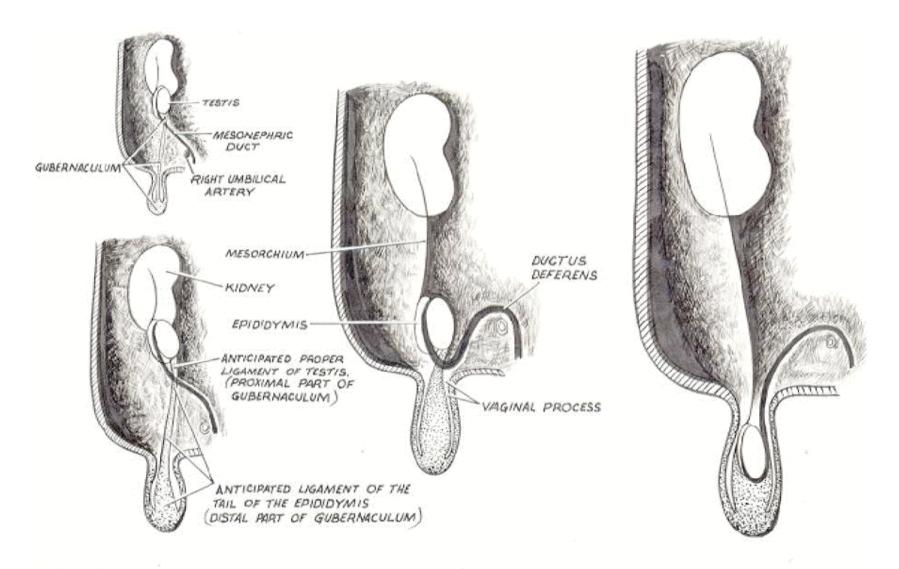

Scrotum

- in most adult mammals testis lies in the scrotum
 - migrates there through the body wall inguinal canal
 - some exceptions:
 - testis is lumbar monotremes, elephants, hyraxes
 - inguinal canal hedgehogs, moles, some seals
 - seasonal migration wild ungulates, most rodents

Cryptorchidism

- cryptorchidism "hidden" "abdominal" testis
 - Undescended testis in those species with scrotal testis
 - detrimental to spermatogenesis and normal testicular metabolism
 - associated with increased risk of testicular cancer
 - rise in US & Europe in last 30-40 years

Descent of the Mammalian Testis


T. Klonisch et al. Developmental Biology 270 (2004) 1-18

Model for testicular migration

- 1) migration of testis apparently involves two phases
 - Initial stage is transabdominal migration
 - Second stage is passage through the inguinal canal
- 2) A number of hormones are involved in this process
 - INSL3 (insulin-like peptide hormone 3)
 - Testosterone

Model for testicular migration

- testis is firmly attached to abdominal wall by:
 - a) posterior gonadal ligament
 - b) gubernaculum (Latin: helm or rudder)
 - as body grows gubernaculum does not grow extensively; thus, testis is drawn downward

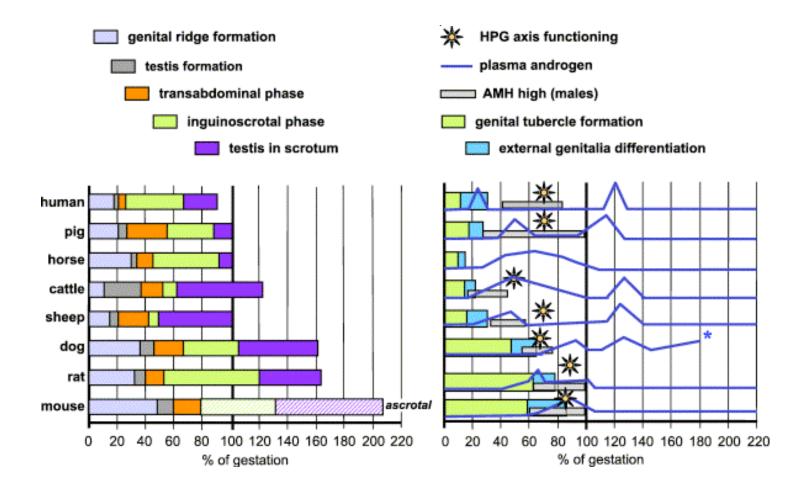
A SCHEMATIC DIAGRAM OF THE DESCENT OF THE TESTIS.

Intra-abdominal testicular descent to the inner inguinal ring

- Human: initiated at about 10-14 weeks of gestation to about weeks 20-23
- insulin-like peptide hormone INSL3
 - structurally closely related to relaxin
 - marker of mature testicular Leydig cells
 - G protein-coupled receptor LGR8
- Mouse: Bilateral cryptorchidism in INSL3-/- mice
 - small, undifferentiated gubernacula without a central core of mesenchyme
- Transgenic INSL3-/- male mice
 - Overexpressing INSL3 in pancreatic beta-cells
 - Normal transabdominal testis descent
- Transgenic female mice overexpressing INSL3
 - displayed descended ovaries and inguinal hernia
 - INSL3 expression in the ovary initiated day 6 after birth

testicular descent through the inguinal canal

- Human: completed by week 35 in the human
- Pig: around day 95 of gestation in the pig fetus
- inguinoscrotal, but not transabdominal, testis descent is impaired
 - LH receptor knockout mouse (LuRKO)
 - devoid of LH stimulation
 - hypogonadal (hpg) mouse
 - lacking the gonadotropins FSH and LH mutated GnRH gene
- Gubernaculum and the cranial suspensory ligament (CSL)
 - sexually dimorphic structures
 - target tissues of androgens
- Regression of the CSL is an androgen-dependent process
 - androgens are unable to suppress CSL formation in
 - male bats with retractable testes
 - testicond mammals lacking testis descent
 - (Paenungulata, Monotremata, Edentata, Cetacea)


Testicular descent through the inguinal canal

- Gubernaculum
- sexually dimorphic structure
 - target tissue of androgens
- levels of AR is initially expressed independently of androgens
 - both sexes
- Then
 - increase in ligand-dependent manner in the male
 - female gubernaculum expression of AR declines
- Balance between AR and estrogen receptors (ER α and ER β) important factor
 - Treatment of neonatal rats with DES suppresses both T levels and AR expression
- Inhibition of androgen signaling
 - by the anti-androgen flutamide
 - significant increase in $\text{ER}\alpha$ and $\text{ER}\beta$

Masculinization of the Genitofemoral nerve

- Testosterone: masculinizing effects on the sensory nucleus of the genitofemoral nerve (GFN)
- In males,
 - L1 to L2 of the dorsal root ganglia
 - Unilateral transsection of the GFN causes ipsilateral cryptorchidism
- Sensory branch of the GFN acts via the neurotransmitter
 - calcitonin gene-related peptide (CGRP)
 - affects gubernacular migration during the inguinoscrotal phase.
- CGRP elicits rhythmic contractions of gubernacula
 - stimulates growth and differentiation of neonatal myogenic cells

Comparative Testis Development

T. Klonisch et al. Developmental Biology 270 (2004) 1-18

Genes - Cryptorchidism

Rodent model	Cause of cryptorchidism	Reference
DAX1 ^{-/-} mouse	DAX1 deficiency ^a	Caron et al., 1999
Desrt ^{-/-} mouse	A-T rich interaction do-	Lahoud et al., 2001
	main (ARID) class tran-	
	scription factor deficiency	
GnRH-promoter-driven	LHR/FSHR deficiency	Radovick et al., 1991
SV40-T transgenic mouse		
GREAT ^{-/-} mouse	INSL3/ relaxin receptor de-	Overbeek et al., 2001
	ficiency	
hpg (hypogonadal) mouse	GnRH deficiency	Charlton et al., 1983
Hoxa 10 ^{-/-} mouse	Homeobox gene products	Satokata et al., 1995
	A 10 (HOXA 10) defi-	
	ciency	
Hoxa 11 ^{-/-} mouse	Homeobox gene product A	Hsieh-Li et al., 1995
	11 (HOXA 11) deficiency	
Hoxa 10/Hoxa11	Abdominal-B-related	Branford et al., 2000
	homeobox gene product	
	transheterozygous	
	deficiency	
Insl3 ^{-/-} mouse	INSL3 deficiency	Nef and Parada, 1999; Zimmermann et al., 1999
LuRKO mouse	LHR deficiency	Zhang et al., 2001
p450AROM ⁺ mouse	Aromatase overexpression ^a	Li et al., 2001
Pygmy transgenic mouse	HMGI protein(s)	Zhou et al., 1995
	insertional inactivation	
Tfm (testicular feminiza-	Androgen receptor (Ar)	Charest et al., 1991
tion) mouse	mutations and/ or AR	
	dysfunction ^a	
WT1 ^{-/-} mouse	WT1 deficiency ^a	Kreidberg et al., 1993
Trans-scrotal (TS) rat	CGRP receptor downregu-	Ikadai et al., 1988
	lation	

T. Klonisch et al. Developmental Biology 270 (2004) 1-18

Summary - Ovary & Testis

Table 3. Sexually dimorphic features of the gonads.					
Function	Testis	Ovary			
Determining gene	SRY	Unknown			
Timing of sex determination	Day 42 pc	Day 47 pc			
Germ-cell status and dependence	Mitotic arrest; gonocytes not required for differentiation	Meiotic arrest; gonocytes obligatory for differentiation			
Steroidogenic cell types	Leydig cells (fetal type)	Theca and granulosa cells			
Steroid hormones; regulation	Androgens; hCG/LH	Androgens, progesterone, oestrogens; hCG/LH, FSH			
Connective tissue/ stromal cells	Organized peritubular myoid cell layer supporting cords	Stromal cells without obvious spatial organization			
Temperature dependence of gametogenesis	Scrotal temperature	Body temperature			
Immune/host defence	Interstitial macrophage population	Unknown			
pc, post conception; hCG, human chorionic gonadotropin; LH, luteinizing hormone; FSH, follicle- stimulating hormone.					

Soder (2007) Best Practice & Research Clinical Endocrinology & Metabolism 21: 381-391.